

Detection of active compounds and their stability in feeds

Lessons learnt from SMEthane

Hamid Boudra¹, Ignacio Martin Garcia²

¹INRA (UMR 1213 Herbivores, 63122 Saint-Genès-Champanelle, France)

²Instituto de Nutrición Animal, Estación Experimental del Zaidín (CSIC)

Ideal additive:

1- Definable = active molecules can be analysed

2- Stable under practical conditions of use

1 - Analytical method:

 To quantify concentration in commercial products and feeds

• **To trace** them in animal products and in the environnment

1 - Analytical methods:

- Developed methods for 12 natural or synthetic additives provided by 5 industrial partners
- Additives were analysed either by LC or GC-MS/MS
- LC-MS/MS was developed with objective to analyse all the additives **simultaneously**.

1 - LC-MS/MS method:

For simultaneous detection:

- 1- Extraction
- → achieved with aqueous acetonitrile
- 2- MS Detection
- → Ionization (positive or negative)
- → Acquisition (MRM, SIR, ...)

	Extraction	Detection		
Compounds		ESI mode	MRM	
S1a	ACN-DW	Negative		
S1b	ACN-DW	Negative		
S8	ACN-DW	Negative		
S11	ACN-DW	Positive		
S12	ACN-DW	Positive		^

Conclusion:

Analysis was done in 2 different methods

1- LC-MS/MS method: How?

Validation: linearity, specificity and variability

1- LC-MS/MS method: How?

Matrix effect

2- Stability:

Why we should test the stability?

- To know the effect of storage conditions
 - humidity
 - temperature
 - length of storage

- To make recommendations on
 - packaging
 - Processing
 - best before use date

2- Stability:

Preparation of spiked meal and pellet

- Done by Spain team: same substrate and preparation
- Homogeneity tested by analysing 5 replicates
- Feeds were aliquoted in several plastic bottles.
 - One set analysed immediately (control)
 - The rest stored at different temperatures: +4 (as reference), 15 and 30 °C.
 - Analysed at 0, 1 and 2 months

2- Stability: Results

Effect of pelleting process

- Loss of all additives

2- Stability

Effect of 1 month storage and temperature

- No differences between meal and pellet, except S6 and S8*
 - → Fungal growth
- Loss increase with temperature
- S4 was unstable

Conclusion: What we learned from this project?

From analytical method

- Multi detection is possible depending on chemical structure
- Matrix enhanced the response in LC-MS method
- Sample homogeneity can be disturbed during storage

Conclusion: What we learned from the stability study?

- Stability highly variable: nature of additive and temperature of storage
 - Not recommended to store in tropical and subtropical areas or during the hot season in temperate areas
- Pelleting process affected negatively stability
- Residual humidity in feeds can promote mold development, especially at high temperature.
- The absence of fungal growth in **pellet-S1a & b, S11** and **12** could be explained by antimicrobial and antifungal activities of additives (*Yabuki et al. 2010*)